

Neural Architecture Search and Beyond

Barret Zoph

Progress in Al

- Generation 1: Good Old Fashioned Al
 - Handcraft predictions
 - Learn nothing
- Generation 2: Shallow Learning
 - Handcraft features
 - Learn predictions
- Generation 3: Deep Learning
 - Handcraft algorithm (architectures, data processing, ...)
 - Learn features and predictions end-to-end
- Generation 4: Learn2Learn (?)
 - Handcraft nothing
 - Learn algorithm, features and predictions end-to-end

Importance of architectures for Vision

- Designing neural network architectures is hard
- Lots of human efforts go into tuning them
- There is not a lot of intuition into how to design them well
- Can we try and learn good architectures automatically?

Two layers from the famous Inception V4 computer vision model. Szegedy et al, 2017

Convolutional Architectures

Krizhevsky et al, 2012

Zoph & Le. Neural Architecture Search with Reinforcement Learning. ICLR, 2017. <u>arxiv.org/abs/1611.01578</u> Real *et al.* Large Scale Evolution of Image Classifiers. ICML, 2017. <u>arxiv.org/abs/1703.01041</u>

How does architecture search work?

Controller: proposes ML models

Train & evaluate models

Example: Using reinforcement learning controller (NAS)

Zoph & Le. Neural Architecture Search with Reinforcement Learning. ICLR, 2017. <u>arxiv.org/abs/1611.01578</u>

Example: Using evolutionary controller

Google

• Reset weights

ImageNet Neural Architect Search Improvements

Tan & Le. EfficientNet: Rethinking Model Scaling for Deep Convolutional Neural Networks, 2019 arxiv.org/abs/1905.11946

Architecture Decisions for Detection Architecture Search

Ghiasi et al. Learning Scalable Feature Pyramid Architecture for Object Detection, 2019 <u>arxiv.org/abs/1904.07392</u>

Video Classification Architecture Search

Learn the connections

between blocks

Table 1: State-of-the-art action classification performances on Charades [19].

Method	modality	mAP
2-Strm. [20] (from [18])	RGB+Flow	18.6
Asyn-TF [18]	RGB+Flow	22.4
CoViAR [28]	Compressed	21.9
MultiScale TRN [33]	RGB	25.2
I3D [3]	RGB	32.9
I3D [3] (from [25])	RGB	35.5
I3D-NL [25]	RGB	37.5
STRG [26]	RGB	39.7
LFB [27]	RGB	42.5
SlowFast [6]	RGB+RGB	45.2
Two-stream (2+1)D ResNet	RGB+Flow	46.5
AssembleNet	RGB+Flow	51.6

State-of-the-art accuracy

Ryoo *et al.*, 2019. AssembleNet: Searching for Multi-Stream Neural Connectivity in Video Architectures. <u>arxiv.org/abs/1905.13209</u>

Search

Translation: WMT

256 input words + 256 output words So, et al. The Evolved Transformer, 2019, arxiv.org/abs/1901.11117

Architecture Decisions

Platform-aware search

Tan *et al.*, MnasNet: Platform-Aware Neural Architecture Search for Mobile. CVPR, 2019 arxiv.org/abs/1807.11626

Collaboration between Waymo and Google Brain:

- 20–30% lower latency / same quality.
- 8–10% lower error rate / same latency.

'Interesting' architectures:

https://medium.com/waymo/automl-automating-the-design-of-machine-learning-models-for-autonomous-driving-141a5583ec2a

Google

Tabular Data

trees, neural nets, #layers, activation functions, connectivity **Automated Automated Automated Automated Automated Automated Feature Architecture** Hyper-Model Model **Model Distillation** Engineering Search parameter Selection Ensembling and Export for Tuning Serving Can distill to decision trees Normalization, Transformation for interpretability (log, cosine)

https://ai.googleblog.com/2019/05/an-end-to-end-automl-solution-for.html

Tabular Data

Better than % of Kaggle Players

Internal Benchmark on Kaggle Competitions

	Wii # C	nners Congrats			alta	kagg	le days
#	∆pub	Team Name	Kernel	Team Members	Score Ø	Entries	Last
1	▲ 30	Erkut & Mark		X	0.61691	12	17m
2	~ 1	Google AutoML			0.61598	8	44m
3	₹2	Sweet Deal		4	0.61576	20	26m
4	~ 11	Arno Candel @ H2O.ai		(Q)/	0.61549	17	16m
5	*1	ALDAPOP		<u> 1</u> 🖄	0.61504	11	15m
6	- 12	9hr Overfitness		1	0.61437	17	15m
				L	001	i ka	ggle

AutoML placed 2nd in a <u>live one-day</u> <u>competition</u> against 76 teams

Problems of NAS

- Enormous compute consumption
 - Requires ~10k training trials to coverage on a carefully designed search space
 - Not applicable if single trial's computation is heavy
- Works inefficiently on arbitrary and giant search space
 - Feature selection (search space 2^100 if there are 100 features)
 - Per feature transform (search space c^100 if there are 100 features and each has c types of transform)
 - Embedding and hidden layer size

Efficient NAS: Addressing the efficiency

Google

Key idea:

- 1. One path inside a big model is a child model
- 2. **Controller selects a path** inside a big model and train for a few steps
- Controller selects another path inside a big model and train for a few steps, reusing the weights produced by the previous step
- 4. Etc.

Results: Can save 100->1000x compute

Related works: DARTS, SMASH, One-shot architecture search,

Pham et al, 2018. Efficient Neural Architecture Search via Parameter Sharing, <u>arxiv.org/abs/1802.03268</u>

Learning Data Augmentation Procedures

Data Augmentation

Enlarge your Dataset

AutoAugment Search Algorithm

Controller: proposes augmentation policy

Train & evaluate models with the **augmentation policy**

Cubuk et al, 2018. AutoAugment: Learning Augmentation Policies from Data, <u>arxiv.org/abs/1805.09501</u>

AutoAugment: Example Learned Policy

AutoAugment Learns: (Operation, Probability, Magnitude)

AutoAugment: Example Learned Policy

For each Sub-Policy (5 Sub-Policies = Policy): AutoAugment Learns: (Operation, Probability, Magnitude)

AutoAugment CIFAR Results

Full CIFAR-10

Model	No data aug	Standard data-au	g AutoAugment
Wide-ResNet-28-10	3.87	3.08	2.68
Shake-Shake (26 2x32d)	3.55	3.02	2.47
Shake-Shake (26 2x96d)	2.86	2.56	1.99
Shake-Shake (26 2x112d)	2.82	2.57	1.89
AmoebaNet-B (6,128)	2.98	2.13	1.75
PyramidNet+ShakeDrop	2.67	2.31	1.48
	CIFAR-	100 ^s	tate-of-the-art accuracy
Model	No data aug	Standard data-aug	g AutoAugment
Wide-ResNet-28-10	18.80	18.41	17.09
Shake-Shake (26 2x96d)	17.05	16.00	14.28
PyramidNet+ShakeDrop	13.99	12.19	10.67

AutoAugment ImageNet Results (Top5 error rate)

Model	No data augmentation	Standard data augmentation	AutoAugment
ResNet-50	7.80	6.92	6.18
ResNet-200		5.85	4.99
AmoebaNet-B		3.97	3.78
AmoebaNet-C		3.90	3.52

Code is opensourced: https://github.com/tensorflow/models/tree/mast er/research/autoaugment

Expanded AutoAugment for Object Detection

Zoph et al. 2019, Learning Data Augmentation Strategies for Object Detection, <u>arxiv.org/abs/1906.11172</u>

Learn Augmentation on COCO Results

ResNet-50 Model	Method	mAP
	baseline	36.7
	baseline + DropBlock [13]	38.4
	Augmentation policy with color operations	37.5
	+ geometric operations	38.6
	+ bbox-only operations	39.0

Backbone	Baseline	Our result	Difference
ResNet-50	36.7	39.0	+2.3
ResNet-101	38.8	40.4	+1.6
ResNet-200	39.9	42.1	+2.2

Learn Augmentation on COCO Results

Architecture	Architecture Change		mAP	mAPs	mAP_{M}	$mAP_{\rm L}$
MegDet [32]		multiple	50.5	-	_	-
	baseline [14]	1	47.0	30.6	50.9	61.3
AmoebaNet + NAS-FPN	+ learned augmentation	1	48.6	32.0	53.4	62.7
	+ \uparrow anchors, \uparrow image size	1	50.7	34.2	55.5	64.5
			State the ti	of-the-a	art accur a single r	acy at nodel

Code is opensourced:

https://github.com/tensorflow/tpu/tree/master/models/official/detection

RandAugment: Practical data augmentation with no separate search

Magnitude: 9

Faster AutoAugment w/ vastly reduced search space!

Original

ShearX

AutoContrast

Only two tunable parameters now: Magnitude and **Policy Length**

AutoContrast

Magnitude: 28

Cubuk et al. 2019, RandAugment: Practical data augmentation with no separate search, arxiv.org/abs/1909.13719

RandAugment: Practical data augmentation with no separate search

Match or surpass AA with significantly less cost!

	baseline	PBA	Fast AA	AA	RA
CIFAR-10	2				
Wide-ResNet-28-2	94.9	2	-	95.9	95.8
Wide-ResNet-28-10	96.1	97.4	97.3	97.4	97.3
Shake-Shake	97.1	98.0	98.0	98.0	98.0
PyramidNet	97.3	98.5	98.3	98.5	98.5
CIFAR-100					
Wide-ResNet-28-2	75.4	-	-	78.5	78.3
Wide-ResNet-28-10	81.2	83.3	82.7	82.9	83.3
SVHN (core set)					
Wide-ResNet-28-2	96.7	~	-	98.0	98.3
Wide-ResNet-28-10	96.9	-	-	98.1	98.3
SVHN					
Wide-ResNet-28-2	98.2	-	-	98.7	98.7
Wide-ResNet-28-10	98.5	98.9	98.8	98.9	99.0

RandAugment: Practical data augmentation with no separate search

-	baseline	Fast AA	AA	RA
ResNet-50	76.3/93.1	77.6 / 93.7	77.6 / 93.8	77.6 / 93.8
EfficientNet-B5	83.2 / 96.7	-	83.3 / 96.7	83.9 / 96.8
EfficientNet-B7	84.0 / 96.9	-	84.4 / 97.1	85.0 / 97.2

Can easily scale regularization strength when model size changes!

State-of-the-art accuracy

Code and Models Opensourced:

https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet