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What Have Deep Nets done to Computer Vision?

 Compared to human observers, Deep Nets are brittle and rely heavily
on large annotated datasets. Unlike humans, Deep Nets have
difficulty learning from small numbers of examples, are oversensitive
to context, have problems transferring between different domains,
and lack interpretability.

 What are the challenges that Deep Nets will need to overcome? What
modifications will they need to address these challenges. In
particular, how to deal with the combinatorial complexity of real
world stimuli.

» Alan Yuille and Chenxi Liu. “Deep Networks: What have they ever
done for Vision?”. Arxiv. 2018.



Deep Nets face many challenges

* Deep Nets face many challenges if we want them to develop systems
which are robust, effective, flexible, and general-purpose.

* What are their current limitations?

e Dataset Bias, Domain Transfer, Lack of Robustness.

* And perhaps the combinatorial explosion?

* What types of models can deal with these challenges.



Explore the robustness of Deep Nets by
photoshopping Ocluders and Context.

* Deep Nets have sensitivity to occlusion and context.
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* J. Wang et al. "Visual concepts and compositional voting."In Annals of
Mathematical Sciences and Applications.2018,

» See also “The elephant in the room” A. Rosenfeld et al. Arvix. 2018)



Deep Nets have errors to random occlusion.

* Compare Human observers to Deep Nets for classifying objects with random
occlusions.

* Deep Net performance is not terrible, but is significantly weaker than humans.
Humans occasionally confuse bike with motor-bike, but deep nets have more
confusions (e.g., between cars and buses).

Human AlexNet ResNet VGG16
car
motorbike
er'OPI“”e bicyC'e bus C“,{;ota:‘bikg
a True label p=0.72 p=0.79 p=0.85

* Hongru Zhu et al. Robustness of Object Recognition under Extreme Occlusion
in Humans and Computational Models. Proc. Cognitive Science. 2019.



Datasets: Biases. Rare Events, and Transfer

* Deep Net sensitivity to occlusion and context is only one of several
challenges.

» Dataset-bias is another challenges. They are a finite set of samples
from the enormous domain of real world images. This induces biases,
like “rare events”.

* Domain-Transfer is another challenge. Results on one image domain
may fail to transfer to images from another image domain (examples
later).

* But, arguably, these are all symptoms of a large problem.



When are Datasets big enough?

* Deep Nets are learning based methods.

* Like all machine learning methods, they assume that the observed
data (X,Y) are random samples from an underlying distribution P(X,Y).

* This is justified by theoretical studies — e.g., Probably Approximately
Correct theorems (Vapnik, Valiant, Smale and Poggio) — and, in
practice, by using cross-validation to evaluate performance.

e But these theoretical studies require that the annotated datasets for
testing and training Deep Nets are sufficiently large to be
representative of the underlying problem domain.

 When will the datasets be big enough?



Data Set sizes: Examples.

* |f the goal is to detect Pancreatic Cancer, then the datasets need to capture
the variability of the shapes of the Pancreas and the size and location of
tumors. This is a well-defined and constrained domain.

* |f the goal is to recognize faces, then the datasets need to be big enough to
capture the variability of faces. This is also well-defined and constrained

domain.

* In these constrained domains, we need big datasets. But they are finite and
it seems possible to obtain them.

e But for many vision tasks, the domains are much larger.



The Space of Images is Infinite

The space of images is infinite. There are infinitely many images infinitesimally
near every image in the datasets. This is exploited by digital adversarial attacks.

This may not be serious because Deep Nets can probably be trained to deal with
this problem. For example, by using the min-max principles (Madry et al. 2017).

From a computer iraphic pers,oective. A model for rendering a 3D virtual scene
into an image will have several parameters: e.g.,. camera pose, lighting, texture,
material and scene layout. If we have 13 parameters, see next slide, and they
take 1,000 values each then we have a dataset of 10739 images.

Deep Nets may be able to deal with this also. But they require many examples
and might perform worse than an algorithm which could identify and characterize
’lch%qn erlying 13-dimensional manitold by factorizing geometry, texture, and
ignting.



Images from synthesized computer graphics model.
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Factorize geometry, texture and lighting.

* Humans can usually factorize geometry, texture, and lighting.
* But occasionally they make mistakes: from C. von der Malsburg.
* Right: what is this image? Left: are the men safe?




The Big Challenge: Combinatorial Complexity

* More seriously:

* Combinatorial possibilities arise when we start placing objects together in
visual scenes. M objects can be placed in N possible locations in the image.

* Combinatorial possibilities even arise if we consider a single ri%id object
which is occluded. E.qg., The object can be occluded by M possible occluding
patches in N possible positions.

* Perhaps most of these combinatorial possibilities rarely happen — they are
all “rare events”.

* But in the real world, rare events can kill people (e.g., failing to find a
Pancreatic tumor, an automatic car failing to detect a pedestrian at night,
or a baby sitting in the road).



The Combinatorial Complexity Challenge

* What happens if we have combinatorial complexity? There are two
big questions:

* (I). How can we train algorithms from finite amounts of data, but
which generalize to combinatorial amounts. Can Deep Nets generalize
in this manner?

* Their sensitivity to Context and Occluders is worrying.

* (II). How can we test algorithms on finite amounts of data and ensure
that they will work on combinatorial amounts of data. The
performance of Deep Nets when tested with random occlusions and
patches is worrying.



Deep Nets and combinatorial complexity: Learning.

* Like all Machine Learning methods, Deep Nets are trained on finite
datasets. It is impractical to train them on combinatorially large datasets
(which may be available using Computer Graphics, see later).

e What to do?

* (I) We may be able to develop strategies where the Deep Net actively
searches a combinatorially large space to find good training data (e.g., an
active robot).

* (Il) Can we develop Deep Nets, or other visual architectures, which can
learn from finite amounts of data but generalize to combinatorially large
datasets?



Deep Nets and Combinatorial Complexity: Testing

* How to test algorithms — like Deep Nets — if the datasets are
combinatorially large?

» Average case performance may be very misleading. Worst case
performance may be necessary.

* To test on combinatorially complex datasets would require actively
searching over the dataset to find the most difficult examples. These
requires generalizing the idea of an adversarial attack from
differentiable digital attacks to more advanced non-local and non-
differentiable attacks — like occluding parts of objects.

» “Let your worst enemy test your algorithm”.



Can Deep Nets deal with Combinatorial Complexity?

* Objects can be occluded in a combinatorial number of ways. It is not practical to
train Deep Nets of all of these. Instead, we can train on some occluders and hope
they will be robust to the others.

» Recall that Deep Nets have difficulty with occlusion and unusual context.
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* Recall that Deep Nets perform worse than human at recognizing objects under
occlusion. (Hongru Zhu et al. 2019).



Can Deep Nets deal with Combinatorial Complexity?

* This is an open issue.

* My opinion is that they will need to be augmented in at least three
ways:

* (I) Compositional — explicit semantic representations of object parts
and subparts. (Not “compositional functions).

* (Il) 3D Geometry — representing objects in terms of 3D geometry,
enables generalization across viewpoints (and useful for robotics).

* (1) Factorize appearance into geometry, material/texture, and
lighting — as done in Computer Graphics models.

* | will give a few slides about (I) and (ll).



Contrast Deep Nets with Compositional Nets

* Compositional Deep Nets are an alternative architecture which contain
explicit representations of parts. Deep Nets have internal representations of
parts, but these are implicit and often hard to interpret.

* The explicit nature of parts in Compositional Deep Nets means that they
are more robust to occluders (without training) because they can
automatically switch off subregions of the image which are occluded.

* See poster A. Kortylewski et al. Neural Architecture Workshop. 28/0ct. Talk
by A. Yuille in Interpreting Machine Learning. Tutorial 27/Oct.

* Note: comi)ositional means “semantic composition”. It does not mean

“functional composition”, which Deep Nets already have.



Contrast Deep Nets with Compositional Nets

e Evaluation: train on unoccluded data, test on occluded data.
CompNets outperform Deep Nets as occlusion increases.

Classification under Occlusion

Occ. Arca 0% Level-1: 20-40% Level-2: 40-60% Level-3: 60-80% Mcan
Occ. Type - w n t 0 w n t 0 w n t 0 E
VGG 992 19791979197.6(90.3]191.6|90.5|89.7|68.8|54.7|152.3|48.147.5| 78.9

“CompMixOcc-Dict | 92.1 [92.7|92.3 | 91.7 | 92.3 | 87.4| 89.5 | 88.7| 90.6 | 70.2 | 80.3 | 76.9 | 87.1 | 87.1
CompMixOcc-Full | 95.9 [95.8[95.2[94.9[94.9[95.0 (933 | 92.9 [ 92.3 | 86.8 [ 83.8 | 80.9 | 88.1| 91.5
CompNetDict___| 98.3 [96.895.9(96.2|94.4|91.2[91.8 [ 91.3 | 91.4 | 71.680.7 | 77.3 | 87.2| 89.5

CompNct-Full 98.6 [97.9[97.5]97.3|96.1 | 959 94.5 | 94.1 | 92.4 [ 86.8 | 84.0| 80.9| 87.7 | 92.6
Human [100.0] 100.0 | 100.0 | 98.3 [9935




3D Geometry:

* Representing objects as 3-dimensional models enable us to better
recognize them from unusual viewpoints.

# Training Samples

2 * ; Approach 6 | 32 | 64
Faster R-CNN|| 16.02 | 21.80 | 19.91
DeepVoting 8.59 | 27.71 | 33.82

# 2 % Ours 45.32 | 47.03 | 45.88

* Yutong Bai et al. Semantic Part Detection via Matching: Learning to
Generalize to Novel Viewpoints from Limited Training Data. ICCV. 20109.




Virtual Data: Making Controlled Datasets

* Tools like UnrealCV enable us to generate datasets which have many
annotations and which test algorithms systematically.

* This enables us to stress test algorithms in challenging conditions.

UnrealCV: Weichao Qiu

¢ UnrealCV: http://unrealcv.org/
* Weichao Qiu

* UnrealCV is a project to help computer vision researchers build virtual
worlds using Unreal Engine 4 (UE4). It extends UE4 with a plugin by
providing:

* (i) A set of UnrealCV commands to interact with the virtual world.
* (ii) Communication between UE4 and external programs like Caffe.



Using Virtual Stimuli to Stress-Test Algorithms.

* Object detection algorithms (W. Qiu & A.L. Yuille. ECCV workshop 2016).
* E.g., Sofa detectors trained on ImageNet mav not work on other data.

E Elevation Azimuth | g0 ya5 g0 995 970
A 0 C 0713 0.769 0.930 0.319
' 30 0.900 1.000 0.588 1.000 0.710

60 0.255 0.100 0.148 0.296 0.649

Table 1. The Average Precision (AP) when viewing the sofa from different viewpoints.
Observe the AP varies from 0.1 to 1.0 showing the sensitivity to viewpoint. This is per-
Fig. 4. Images with different camera height and different sofa color. haps because the biases in the training cause Faster-RCNN to favor specific viewpoints.

* Stress-test binocular stereo. Yi Zhang et al. UnrealStereo. 3DV. 2018.

(c) Disparity jumps (d) Transparency
() Specularity (b) No texture



Synthetic Data: Activity Recognition

Activity Recognition is a visual task which is at big risk for combinatorial complexity.
Synthetic Data can be used to explore this.

We render some synthetic videos of humans punching. Train state-of-the art activity
recognition methods (TSN and 13D) on these tasks using the USC101 activity dataset.

TSN

Punching 0.00 0.00
13D Punching bag 6.25 41.67
13D Punching person 6.25 31.25

Why are the Deep Nets (TSN and I3D) so bad at generalizing to the synthetic data?

(There are problems for alﬁprithms trained on real to generalize to synthetic, but they
are not usually as bad as this).



Why TSN fail to recognize synthetic punching ?

* Conjecture: TSN model trained on UCF101 (right) may have overfit to
background and are unable to localize punching action. Synthetic data
consists of a single boxer (left).

* VVideos from this class in UCF101 are mostly boxing games and
punching sandbags.




Can the TSN correctly localize the punching action ?

* Class Activation Maps (CAM) are a standard technique to detect the
discriminative image regions used by a CNN to identify a specific
activity class.

* CAMs of punching videos from UCF101 test set — detecting ropes.




Ssummary

* This talk has discussed some of the challenges that Deep Nets faces when
dealing with the enormous complexity of the real world.

* We argue that the key challenges arise because the set of all images is
infinite and that for some visual tasks the space of images will need to be
combinatorially large to be representative of the real world.

* Combinatorial complexity raises challenges for both training and testing
algorithms. It is unclear that Deep Nets will be able to overcome them
without significant modifications.

* Modifications may include compositionality, 3D geometry, and
factorizability.

* Computer Graphics — virtual worlds — can be very helpful for generating
controlled challenging adversarial examples for testing algorithms.



