

Understanding the Effects of Pre-Training for Object Detectors via Eigenspectrum

https://arxiv.org/abs/1909.04021

ICCV 2019 Neural Architects Workshop

<u>Yosuke Shinya</u> (DENSO CORPORATION) Edgar Simo-Serra (Waseda University) Taiji Suzuki (The University of Tokyo / RIKEN)

Background

- Prior works:
 - *I* can achieve high accuracy

- [Girshick et al., CVPR2014]
- S can achieve similar accuracy to I [He et al., ICCV2019]
- This work:

Do *I* and *S* converge to similar models? No!

(Extrinsic) Architecture

Yosuke Shinya / Applied AI R&I Dept © DENSO CORPORATION All Rights Reserved.

FNSC

Crafting the Core

Intrinsic dimensionalities

[Suzuki, AISTATS2018]

•Effective dimension of networks is less than actual number of parameters

 Intrinsic dimensionalities can be quantified by eigenspectra of covariance matrices of feature maps

DENSO Crafting the Core

DENSO Crafting the Core

DENSO Crafting the Core

Eigenspectrum dynamics during fine-tuning (Dropping)

A feature map in ResNet stage 5

Yosuke Shinya / Applied AI R&I Dept © DENSO CORPORATION All RightsReserved.

DENSO

Crafting the Core

Eigenspectrum dynamics during fine-tuning (Rebounding)

Yosuke Shinya / Applied AI R&I Dept © DENSO CORPORATION All Rights Reserved.

Crafting the Core

Conclusions: Effects of pre-training

- •ImageNet pre-training increases intrinsic dimensionalities in higher layers
- $\boldsymbol{\cdot}$ Increase of parameters caused by them
- does not improve COCO AP
- improve classification ability

•Current standard architectures and fine-tuning methods of object detectors are insufficient for utilizing the classification ability due to the forgetting

More appropriate architectures and knowledge-transfer methods are needed

•Hand-crafted architectures for sharing parameters \rightarrow Automatic sharing •Parameter transfer (fine-tuning) \rightarrow Feature transfer or others

Where are we going?

(1) Understanding multi-task training

•How to deal with compression of task-irrelevant information?

(2) Task-specific architectures and NAS methods

- •How to design architectures considering task differences?
- •How to overcome long training time for object detection NAS?
 - Reusing ImageNet pre-trained weights are effective but insufficient

(3) Simultaneous optimization of architectures and parameters

- •How to optimize simultaneously?
 - TWEANNS, Differentiable NAS, Neural Rejuvenation [Qiao et al., CVPR2019], ···?
 - Eigenspectrum is related to both architectures and parameters

DENSO Crafting the Core