Neural Architects Workshop

28th October, ICCV 2019

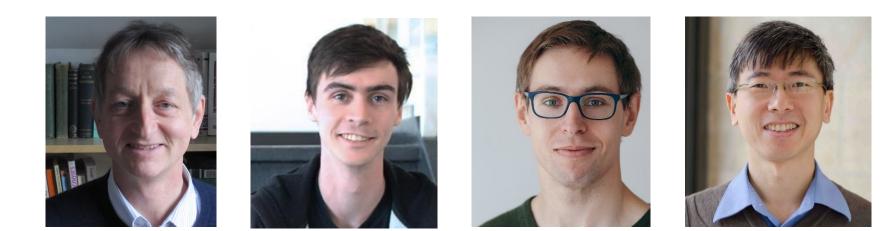
Capsule Architectures

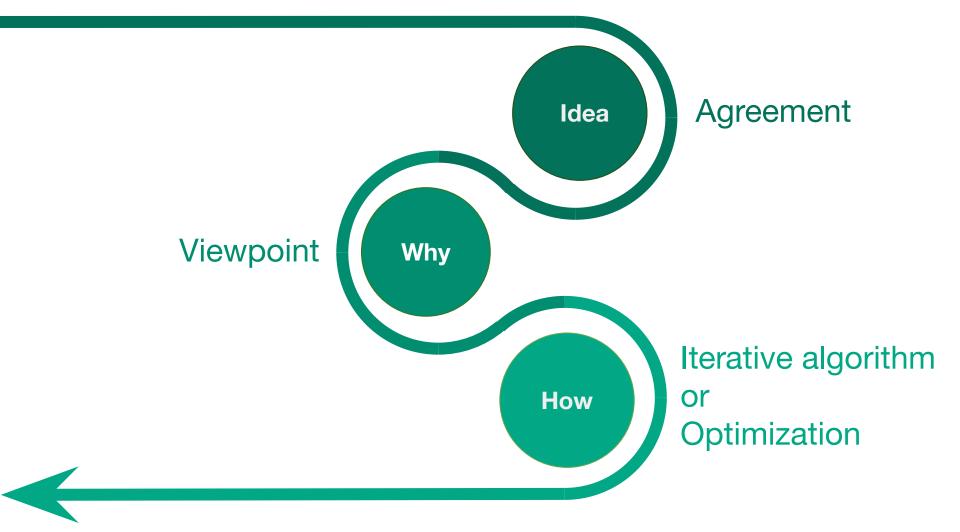
Sara Sabour Google Brain, University of Toronto

Joint work with

- Geoff Hinton
- Nicholas Frosst
- Adam Kosiorek
- Yee Whye Teh

@Google brain@Google brain@Oxford University@Oxford & Deepmind

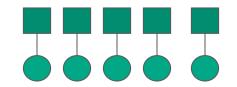




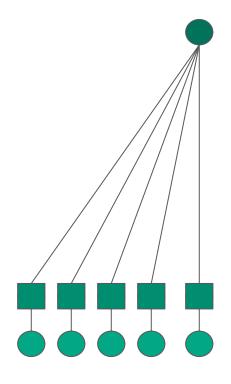
Idea 101: Agreement and Capsules

 Each neuron is multiplied by a trainable parameter.

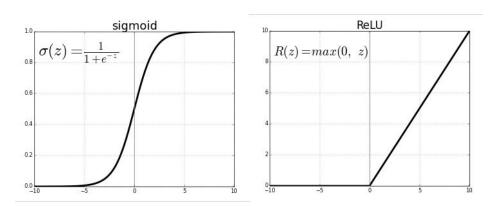
 Each neuron is multiplied by a trainable parameter.

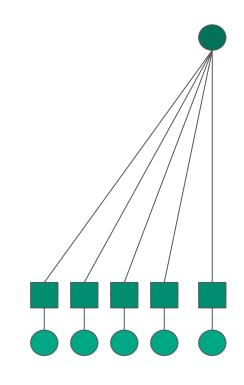


- Each neuron is multiplied by a trainable parameter.
- 2. The incoming votes are summed.



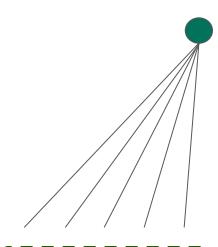
- 1. Each neuron is multiplied by a trainable parameter.
- 2. The incoming votes are summed.
- 3. A nonlinearity (ReLU) is applied where a higher sum means more activated.

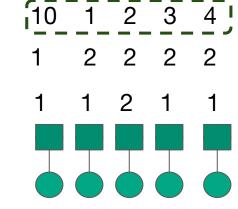




- 1. Each neuron is multiplied by a trainable parameter.
- 2. The incoming votes are summed.
- 3. A nonlinearity (ReLU) is applied where a higher sum means more activated.

Consider these three cases:

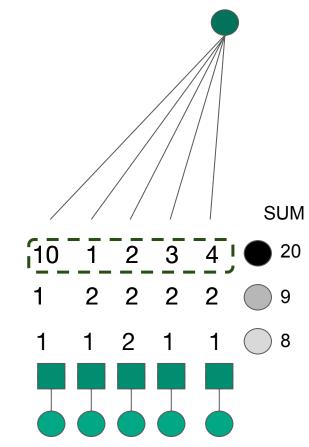




- Each neuron is multiplied by a trainable parameter.
- 2. The incoming votes are summed.
- 3. A nonlinearity (ReLU) is applied where a higher sum means more activated.

Consider these three cases:

Dictatorship Support comes from a confident shouter!

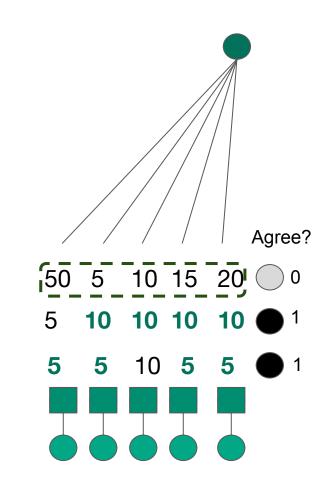


Agreement Invariance

- Each neuron is multiplied by a trainable parameter.
- 2. Do they agree with each other.

Democracy Support comes from coordinated mass!

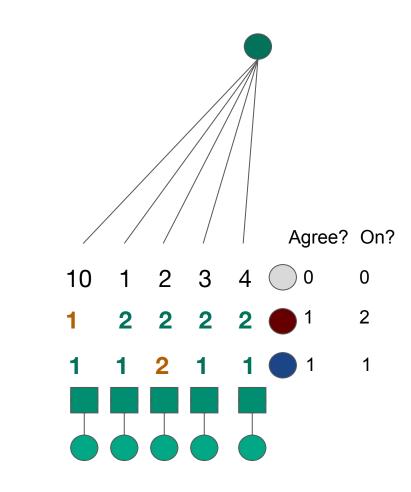
SUM + ReLU -----> Count



Agreement, enhanced Invariance Equivarience

- Each neuron is multiplied by a trainable parameter.
- 2. Do they agree with each other.
- 3. What are they agreeing upon.

No loss of information! If 5 is multiplied to everything, what they are agreeing upon will be multiplied by 5.

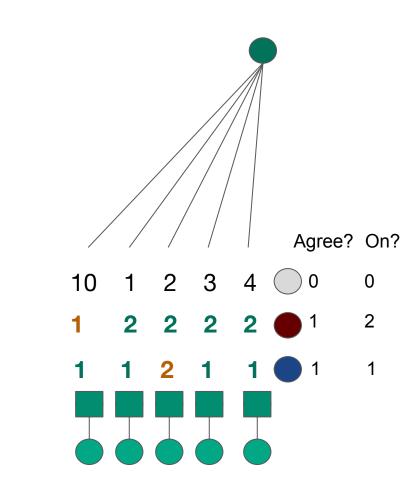


Agreement, what we get? Invariance Equivarience

- Each neuron is multiplied by a trainable parameter.
- Do they agree with each other.
- 3. What are they agreeing upon.

Training with this non-linearity

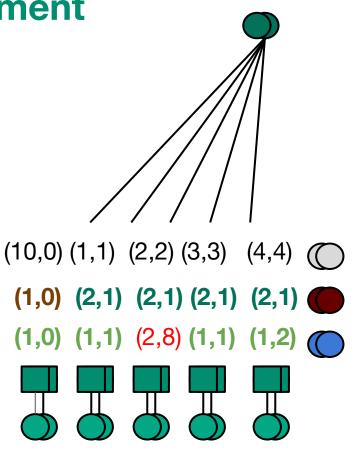
- Counting: Non-differentiable
- Similarity function: differentiable



Multi Dimension Enhanced Agreement Stronger Invariance Stronger Equivarience

- 1. Each neuron is multiplied by a trainable parameter.
- 2. Do they agree with each other.
- 3. What are they agreeing upon.

Stronger and more robust agreement finding.



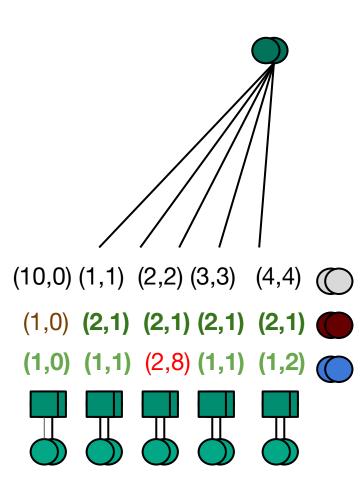
Recap

• Base idea

Agreement non-linearity How many are the same rather than who is larger

- Enhancements
 - Presence + Value
 - Multi-Dimensional Value

New neurons: Capsules

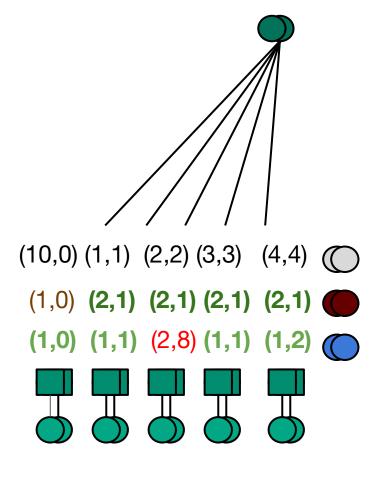


Recap: Capsules

• Base idea

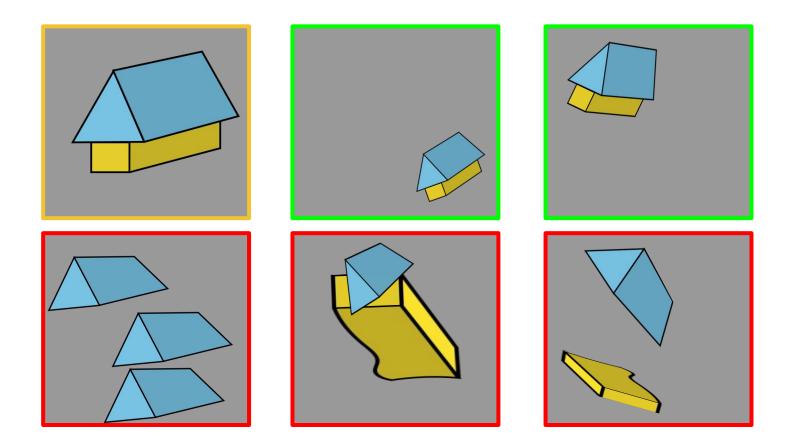
Agreement non-linearity How many are the same rather than who is larger

- Enhancements
 - Presence + Value
 - Multi-Dimensional Value
- A network of Capsules
 - Each capsule has whether it is present and how it is present.
 - Each capsule gets activated if incoming votes agree.



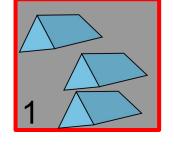
Use Case: Computer Vision

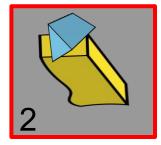
Which one is a house?

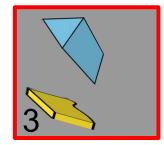


Which one is a house?

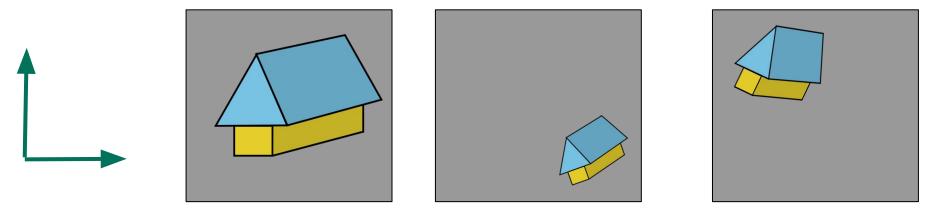
- Both the parts should exist.
 Image 1 is not a house.
- 2. How the roof and the walls exist should match a common house.
 - Image 2 & 3 are not houses.





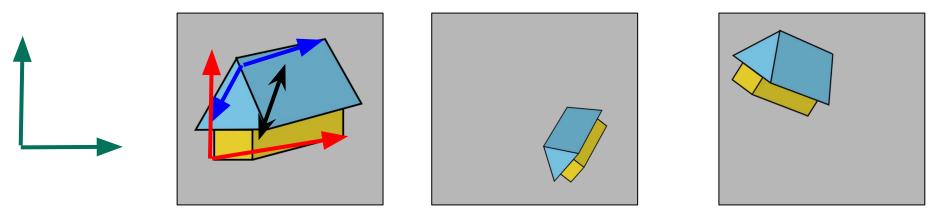


The relation between a part and the whole stays constant.



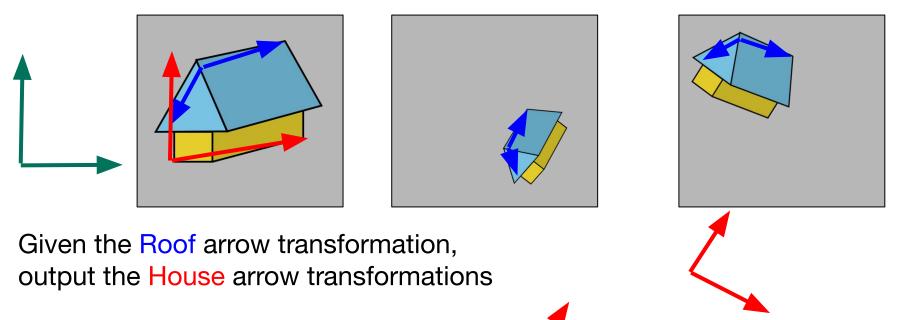
Camera Coordinate Frame

The relation between a part and the whole stays constant: Between the Roof arrows and the House arrows.

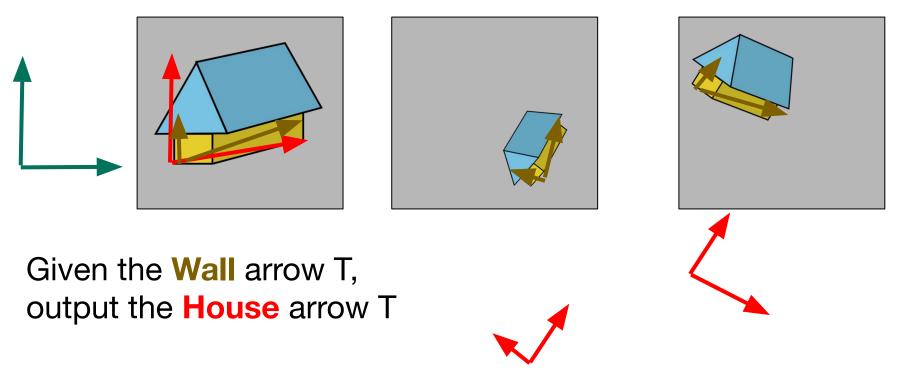


Camera coordinate Frame

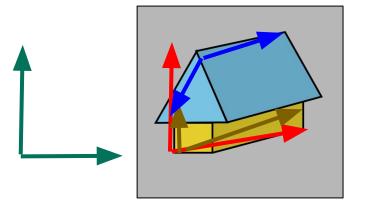
The relation between a part and the whole stays constant: Between the Roof arrows and the House arrows.



The relation between a part and the whole stays constant: Between the **Wall** arrows and the **House** arrows.



Recap



 $T_h = T_r W_{rh}$

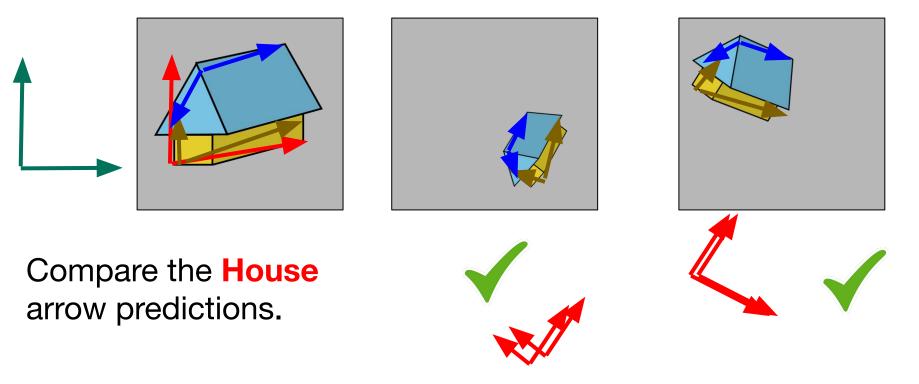
Input to the layer: How to **transform** the **Camera** arrows Into **Roof** and **Wall** arrows. $T_r T_m$ Output of the layer: How to **transform** the **Camera** arrows Into House arrows. I_h

What we learn:

How to transform the transformations.

 $T_h = T_w W_{wh}$

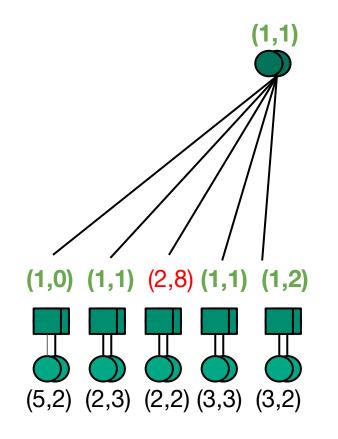
The relation between a part and the whole stays constant: Between the **part** arrows and the **House** arrows.



Network of Capsules for Computer Vision

Each Capsule represents a part or an object.

- The presence of a capsule represents whether that entity exists in the image.
- The value of a capsule carries the spatial position of how that entity exists. I.e. the transformation between the coordinate frame of camera and the entity.
- The trainable parameter between two capsules is the transformation between their coordinate frame transformations as a part and a whole.



Capsule Network

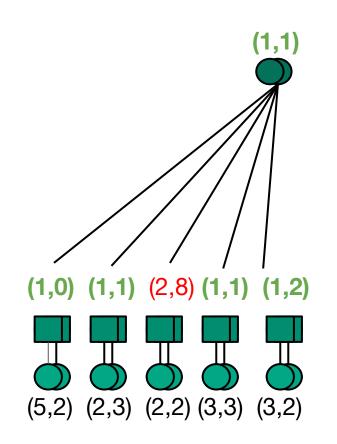
Same trained transformation works for all viewpoints of input.

 Input is transformed and so the value of the output capsule is transformed accordingly.
 Value is viewpoint equivariant.

$$T_{r'} = RT_r$$

$$T_{h'} = RT_h = RT_r W_{rh} = T_{r'} W_{rh}$$

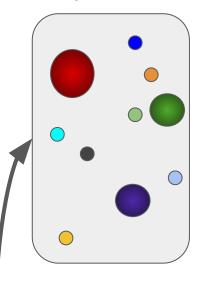
 The agreement of parts would not change. Presence is viewpoint invariant.



How: Iterative routing

EM routing for Gaussian Capsules

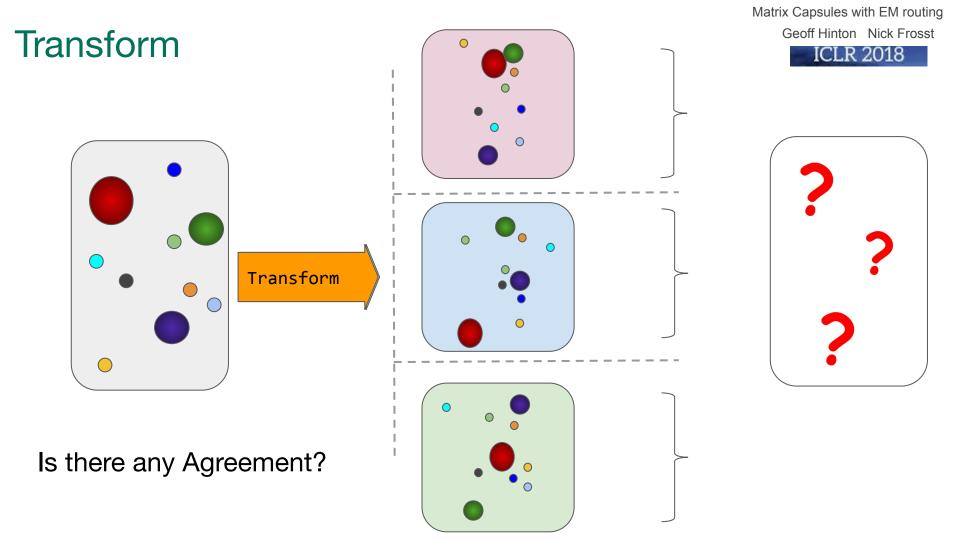
Layer L



- 2D capsules
- Position shows their 2D value
- Radius shows their presence
- What is the value and presence of next layer capsules?

Matrix Capsules with EM routing Geoff Hinton Nick Frosst ICLR 2018

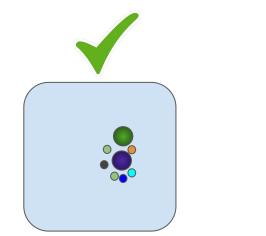
Layer L+1

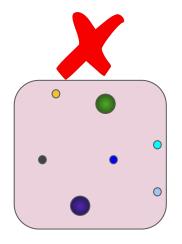


Matrix Capsules with EM routing Geoff Hinton Nick Frosst

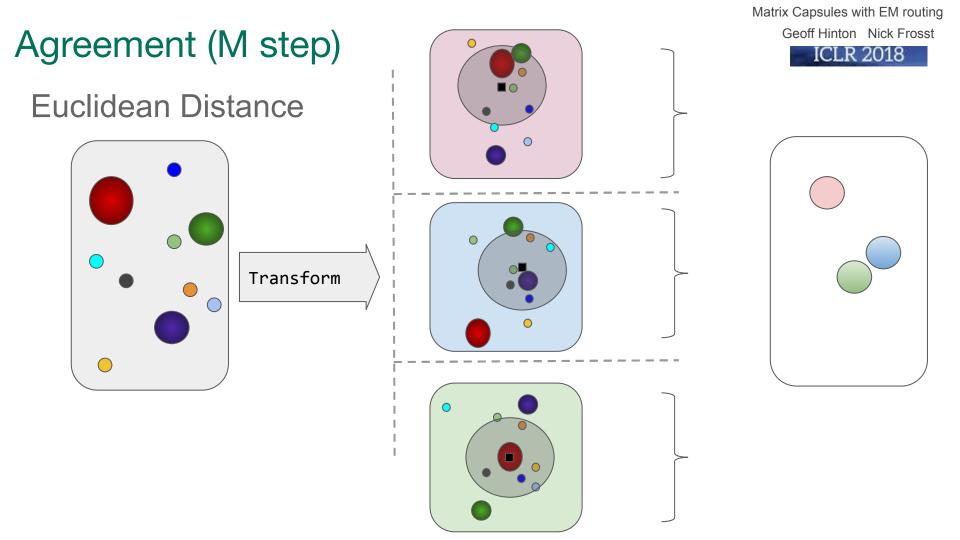
Agreement (M step)

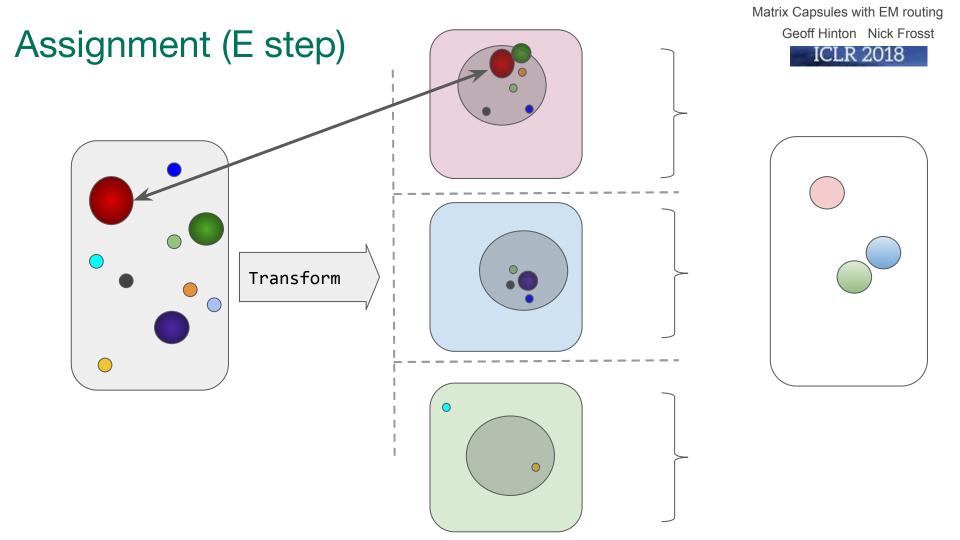
Euclidean Distance

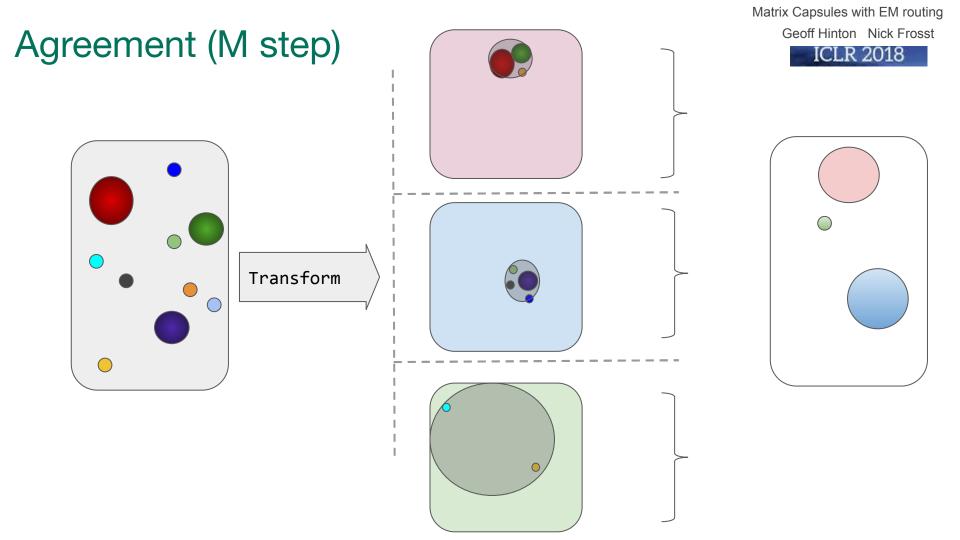


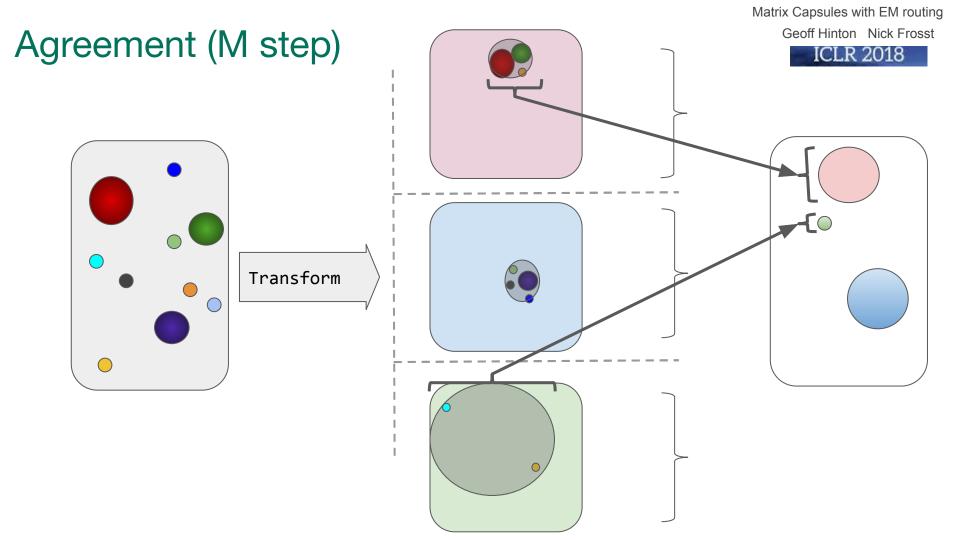


Find the clusters Expectation Maximization for fitting Mixture of Gaussians.

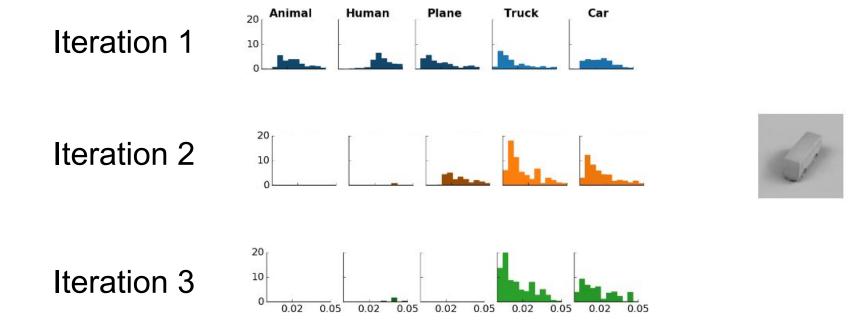








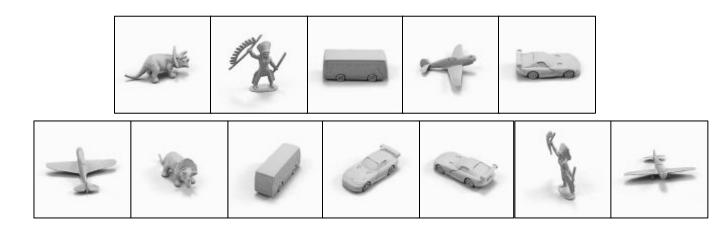
Routing in action



Viewpoint generalization

Train

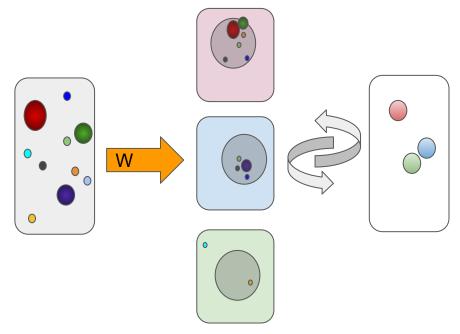
Test



Test error % CNN vs Capsule Azimuth 20% **13.5%** Elevation 17.8% **12.3%** Code available at:

https://github.com/google-research/google-research/tre e/master/capsule em

Agreement Finding



Iterative Routing

- Opt-Caps & SVD-Caps [1, 2]
- G-Caps & SOVNET [3, 4]
 - Explicit group equivarience
- EncapNet [5]
 - Sinkhorn iteration

[1]: Dilin Wang and Qiang Liu. An optimization view on dynamic routing between capsules. 2018.

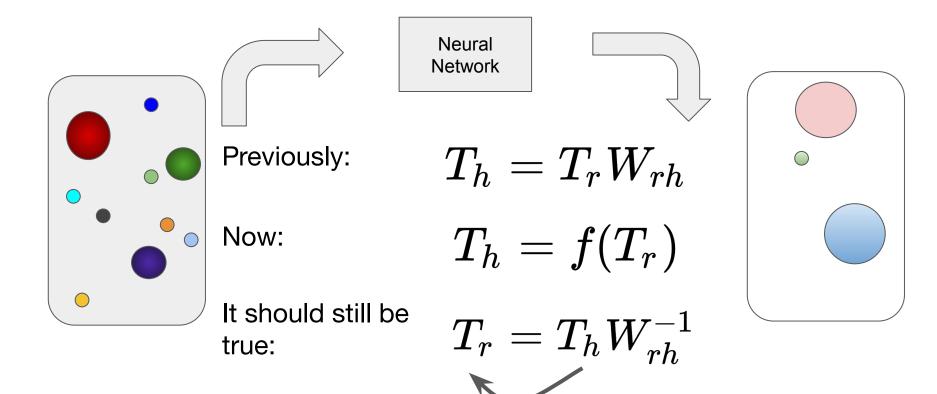
[2]: Mohammad Taha Bahadori. Spectral capsule networks. 2018

[3]: Jan Eric Lenssen, Matthias Fey, and Pascal Libuschewski. Group equivariant capsule networks, NIPS 2018 [4]: Anonymous ICLR 2020 submission.

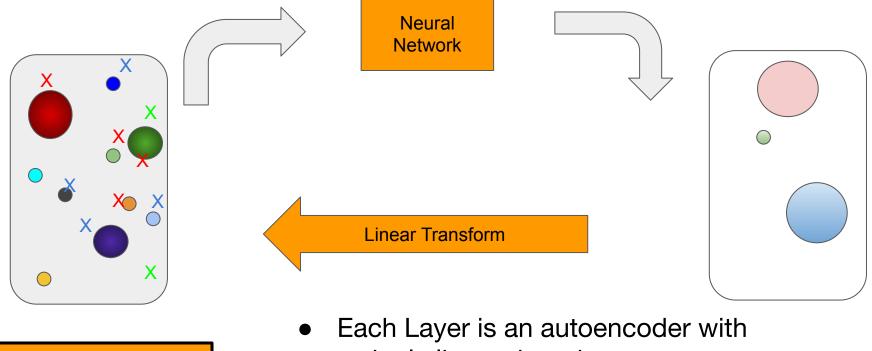
[5]: Hongyang Li, Xiaoyang Guo, Bo Dai, Wanli Ouyang, and Xiaogang Wang. Neural network encapsulation. ECCV, 2018.

Can we learn a neural network to do the clustering rather than running explicit clustering algorithm?

Learn a cluster finder



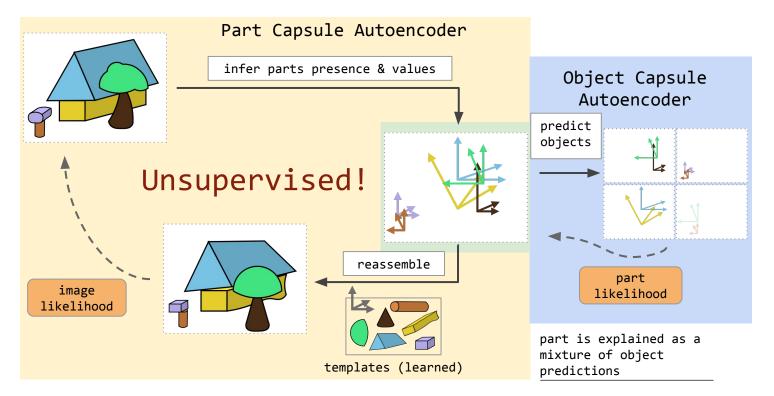
Learn a cluster finder



Optimize mixture model log-likelihood.

- a single linear decoder.
- A whole capsule gives predictions for its part capsules.

Stacked Capsule Autoencoder



Adam Kosiorek et al, Neurips 2019.

SCAE on MNIST Unsupervised

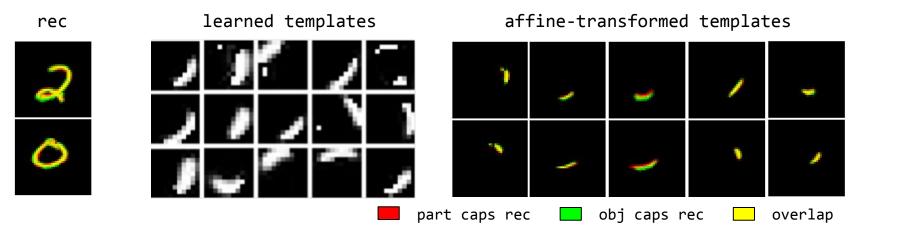
Train with 24 object capsules.

Cluster -> 98.7% Accuracy.

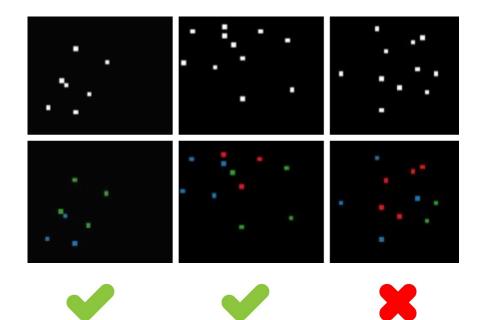
No Image Augmentation.

TSNE of Capsule Presences:

MNIST: Part Capsules



Finding Constellations



- Two squares and a triangle
- Patterns might be absent
- Visualizing the mixture model assignments.

Error:

- Best: 2.8%
- Average: 4.0%
- Baseline: 26.0%

Discussion & Future Work

- Introduced Capsule Networks with agreement.
- Capsule Networks can model viewpoint more efficiently.
 - Better viewpoint generalization.
 - Better unsupervised training.
- Future directions
 - The background.
 - The texture.

Questions