Towards General Vision Architectures: Attentive Single-Tasking of Multiple Tasks

depth

input

Kevis Maninis Ilija Radosavovic

Neural Architects - ICCV 28 October 2019

lasonas Kokkinos

Object detection

Semantic segmentation

Semantic boundary detection

Part segmentation

Surface normal estimation

Saliency estimation

Boundary detection

Can we do it all in one network?

I. Kokkinos, UberNet: A Universal Netwok for Low-, Mid-, and High-level Vision, CVPR 2017

Multi-tasking boosts performance

Detection

Ours, 1-Task	78.7
Ours, Segmentation + Detection	80.1

Multi-tasking boosts performance?

Detection

Ours, 1-Task	78.7
Ours, Segmentation + Detection	80.1
Ours, 7-Task	77.8

Did multi-tasking turn our network to a dilettante?

Detection

Ours, 1-Task	78.7
Ours, Segmentation + Detection	80.1
Ours, 7-Task	77.8

Semantic Segmentation

Ours, 1-Task	72.4
Ours, Segmentation + Detection	72.3
Ours, 7-Task	68.7

Should we just beef-up the task-specific processing?

Ubernet (CVPR 17)

Mask R-CNN (ICCV 17), PAD-Net (CVPR18)

- Memory consumption
- Number of parameters
- Computation
- Effectively no positive transfer across tasks

Multi-tasking can work (sometimes)

- Mask R-CNN [1]:
 - multi-task: detection + segmentation
- Eigen et al. [2] , PAD-Net [3]
 multi-task: depth, sem. segmentation

- Taskonomy [4]
 - transfer learning among tasks

Boint Curvature Normals Construction Curvature Normals Construction Curvature Reshading Z-Depth Distance Can. Rose Normals Construction Curvature Reshading Z-Depth Distance Can. Rose Normals Construction Curvature Normals Construction Curvature Normals Construction Curvature

[1] He et al., "Mask R-CNN", in ICCV 2017

[2] Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", in ICCV 2015
 [3] Xu et al., "PAD-Net: Multi-Tasks Guided Prediction-and-Distillation Network for Simultaneous Depth Estimation and Scene Parsing", in CVPR 2018
 [4] Zamir et al., "Taskonomy: Disentangling Task Transfer Learning", in CVPR 2018

Unaligned Tasks

One task's noise is another task's signal

This is not even catastrophic forgetting: plain task interference

We could even try doing adversarial training on one task to improve performance for the other (force *desired* invariance)

Learning Task Grouping and Overlap in Multi-Task Learning A. Kumar, H. Daume, ICML 2012 Learning with Whom to Share in Multi-task Feature Learning Z. Kang, K. Grauman, F. Sha, ICML 2011 Exploiting Unrelated Tasks in Multi-Task Learning, B. Paredes, A. Argyriou, N. Berthouze, M. Pontil, AISTATS 2012

Identity recognition

Expression recognition

MMI Facial Expression Database

Count the balls!

Solution: give each other space

Solution: give each other space

Solution: give each other space

Less is more: fewer noisy features means easier job!

Question: how can we enforce and control the modularity of our representation?

Learning Modular networks by differentiable block sampling

Blockout regularizer

Blocks & induced architectures

Blockout: Dynamic Model Selection for Hierarchical Deep Networks, C. Murdock, Z. Li, H. Zhou, T. Duerig, CVPR 2016

Learning Modular networks by differentiable block sampling

MaskConnect: Connectivity Learning by Gradient Descent, Karim Ahmed, Lorenzo Torresani, 2017

Learning Modular networks by differentiable block sampling

Convolutional Neural Fabrics, S. Saxena and J. Verbeek, NIPS 2016

Learning Time/Memory-Efficient Deep Architectures with Budgeted Super Networks, T. Veniat and L. Denoyer, CVPR 2018

Modular networks for multi-tasking

PathNet: Evolution Channels Gradient Descent in Super Neural Networks, Fernando et al., 2017

Modular networks for multi-tasking

PathNet: Evolution Channels Gradient Descent in Super Neural Networks, Fernando et al., 2017

Aim: differentiable & modular multi-task networks

How to avoid combinatorial search over feature-task combinations?

Attentive Single-Tasking of Multiple Tasks

- Approach
 - Network performs one task at a time
 - Accentuate relevant features
 - Suppress irrelevant features

http://www.vision.ee.ethz.ch/~kmaninis/astmt/

Kevis Maninis, Ilija Radosavovic, I.K. "Attentive single Tasking of Multiple Tasks", CVPR 2019

Multi-Tasking Baseline

Need for universal representation

Attention to Task - Ours

- Attention to task: Focus on one task at a time
- Accentuate relevant features
- Suppress irrelevant features

Task-specific layers

Continuous search over blocks with attention

A Learned Representation For Artistic Style., V. Dumoulin, J. Shlens, and M. Kudlur. ICLR, 2017. FiLM: Visual Reasoning with a General Conditioning Layer, E. Perez, Florian Strub, H. Vries, V. Dumoulin, A. Courville, AAAI 2018 Learning Visual Reasoning Without Strong Priors, E. Perez, H. Vries, F. Strub, V. Dumoulin, A. Courville, 2017 Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization, Xun Huang, Serge Belongie, 2018 A Style-Based Generator Architecture for Generative Adversarial Networks, T. Karras, S. Laine, T. Aila, CVPR 2019

Modulation: Squeeze and Excitation

Squeeze and Excitation (SE)

- Negligible amount of parameters
- Global feature modulation

Hu et al., "Squeeze and Excitation Networks", in CVPR 2018

Feature Augmentation: Residual Adapters

Residual Adapters (RA)

- Original used for Domain adaptation
- Negligible amount of parameters
- In this work: parallel residual adapters

Rebuffi et al., "Learning multiple visual domains with residual adapters", in NIPS 2017 Rebuffi et al., "Efficient parametrization of multi-domain deep neural networks", in CVPR 2018

Adversarial Task Discriminator

Ganin and Lempitsky, "Unsupervised Domain Adaptation by Backpropagation", in ICML 15

Effect of adversarial training on gradients

t-SNE visualizations of gradients for 2 tasks, without and with adversarial training

Learned task-specific representation

t-SNE visualizations of SE modulations for the first 32 val images in various depths of the network

Learned task-specific representation

depth

PCA projections into "RGB" space

Relative average drop vs. # Parameters

Relative average drop vs. FLOPS

Qualitative Results: PASCAL

MTL Baseline

edge features

blurry edges

consistent

mixing of classes

blurry

no artifacts

checkerboard artifacts

More qualitative Results

More qualitative Results

Big picture: continuous optimization vs search

DARTS: Differentiable Architecture Search, H. Liu, K. Simonyan, Y. Yang

Pre-attentive vs. attentive vision

Human factors and behavioral science: Textons, the fundamental elements in preattentive vision and perception of textures, Bela Julesz, James R. Bergen, 1983

Pre-attentive vs. attentive vision

(a)

Ø П 9 Π Π Π +Ш $I\Pi$ []10 0 Π 93

Human factors and behavioral science: Textons, the fundamental elements in preattentive vision and perception of textures, Bela Julesz, James R. Bergen, 1983

Local attention: Harley et al, ICCV 2017

Segmentation-Aware Networks using Local Attention Masks, A. Harley, K. Derpanis, I. Kokkinos, ICCV 2017

Object-level priming

a.k.a. top-down image segmentation

Object & position-level priming

AdaptIS: Adaptive Instance Selection Network, Konstantin Sofiiuk, Olga Barinova, Anton Konushin, ICCV 2019 Priming Neural Networks Amir Rosenfeld, Mahdi Biparva, and John K.Tsotsos, CVPR 2018

Task-level priming: count the balls!

Attentive Single-Tasking of Multiple Tasks

- Approach
 - Network performs one task at a time
 - Accentuate relevant features
 - Suppress irrelevant features

http://www.vision.ee.ethz.ch/~kmaninis/astmt/

Kevis Maninis, Ilija Radosavovic, I.K. "Attentive single Tasking of Multiple Tasks", CVPR 2019

Thank you for your attention.

http://www.vision.ee.ethz.ch/~kmaninis/astmt/

Double back-propagation

Harris Drucker, Yann LeCun, "Double Backpropagation Increasing Generalization Performance", IJCNN 1991

Double back-propagation

Harris Drucker, Yann LeCun, "Double Backpropagation Increasing Generalization Performance", IJCNN 1991

Adversarial Training using Double Back-Propagation

Deeplab v3+: Sanity Check

Benchmark our re-implementation on popular benchmarks for different (single) tasks:

low-, mid-, and high-level tasks

Task	Dataset	Metric	R-101	strong baseline
Edge	BSDS500	odsF \uparrow	82.5	81.3 [28]
S.Seg	VOC	mIoU ↑	78.9	79.4 [6]
H. Parts	P. Context	mIoU ↑	64.3	64.9* [5]
Normals	NYUD	mErr \downarrow	20.1	19.0 [3]
Saliency	PASCAL-S	$\max F \uparrow$	84.0	83.5 [29]
Depth	NYUD	$RMSE \downarrow$	0.56	0.58 [61]

* COCO pre-training

Ablation on PASCAL: Modulation

SE	RA	#T	Edge ↑	Seg \uparrow	Parts \uparrow	Norm \downarrow	Sal ↑	drop \downarrow
		1	71.3	64.9	57.1	14.9	64.2	
		5	69.2	60.2	54.1	17.0	62.1	6.6
	\checkmark	5	70.5	62.8	56.4	15.3	64.8	1.4
\checkmark		5	71.1	64.0	56.8	15.1	64.4	0.6
				Type of	modulation			
enc	dec	#T	Edge ↑	Seg ↑	Parts ↑	Norm ↓	Sal ↑	drop↓
						•		
		1	71.3	64.9	57.1	14.9	64.2	
		1 5	71.3 69.2	64.9 60.2	57.1 54.1	14.9 17.0	64.2 62.1	6.6
	√	1 5 5	71.3 69.2 70.6	64.9 60.2 63.3	57.1 54.1 56.7	14.9 17.0 15.1	64.2 62.1 63.2	6.6 1.4

Location of modulation

Attention-to-task almost reaches single-tasking performance

Ablation on PASCAL: Adversarial training

mod	А	#T	Edge↑	Seg \uparrow	Parts ↑	Norm \downarrow	Sal ↑	drop \downarrow
		1	71.3	64.9	57.1	14.9	64.2	
		5	69.2	60.2	54.1	17.0	62.1	6.6
	\checkmark	5	69.7	62.2	55.0	16.2	62.2	4.4
\checkmark		5	71.1	64.0	56.8	15.1	64.4	0.6
\checkmark	\checkmark	5	71.0	64.6	57.3	15.0	64.7	0.1

Adversarial training helps! Gains smaller but free of additional computation

Experiments on NYUD and FSV

SEA	#T	Edge ↑	Seg \uparrow	Norm \downarrow	Depth \downarrow	drop \downarrow
	1	74.4	32.8	23.3	0.6	
	4	73.2	30.9	23.3	0.7	5.4
\checkmark	4	74.5	32.2	23.2	0.6	-1.2

(a) Results on NYUD-v2.

SEA	#T	Seg ↑	Albedo ↓	Disp↓	$drop\downarrow$
	1	71.2	0.086	0.063	
	3	66.9	0.093	0.078	7.04
\checkmark	3	70.7	0.085	0.063	-0.02
		$(\mathbf{b}) \mathbf{P}_{\mathbf{a}}$	sults on FS	7	

(b) Results on **FSV**.

Results equal or better to the single-tasking baselines

Ablation: Different backbones

backbone	SEA	#T	Edge ↑	Seg \uparrow	Parts ↑	Norm \downarrow	Sal ↑	drop \downarrow
R-26		1	71.3	64.9	57.1	14.9	64.2	
R-26		5	69.2	60.2	54.1	17.0	62.1	6.6
R-26	\checkmark	5	71.0	64.6	57.3	15.0	64.7	0.1
R-50		1	72.7	68.3	60.7	14.6	65.4	
R-50		5	69.2	63.2	55.1	16.0	63.6	6.8
R-50	\checkmark	5	72.4	68.0	61.1	14.8	65.7	0.04
R-101		1	73.5	69.8	63.5	14.2	67.4	
R-101		5	70.5	66.4	61.5	15.4	66.4	4.5
R-101	\checkmark	5	73.5	68.5	63.4	14.4	67.7	0.6

Results consistent across backbones