
From Architecting Networks to
Architecting Network Generators

Saining Xie Alexander Kirillov Kaiming
He

Ross Girshick

Many slides adapted from Saining Xie

Before 2012 (… but also after 1990)

• Engineering features (SIFT, …), learning weights (SVM, …)

w+

–
+

+

+

–

–

–

–

+
+

Engineered Learned

2012 – now-ish

• Engineering features (SIFT, …), learning weights (SVM, …)

• Engineering networks (AlexNet, VGG, …), learning features and
weights

Millions of parameters
- Internal filters
- Classifier weights

Engineered Learned

Now-ish - ???

• Engineering features (SIFT, …), learning weights (SVM, …)

• Engineering networks (AlexNet, VGG, …), learning features and
weights

• Engineering network generators, learning networks, features &
weights

Engineered Learned

Network Generator (Informally, Simple Case)

• Think of a Python function:

def vgg_net(input_res, depth, conv1_out_channels):
… # code to make the model
return model

Network Generator (Informally, Simple Case)

• Think of a Python function:

def vgg_net(input_res, depth, conv1_out_channels):
… # code to make the model
return model

• Input: some arguments (resolution, widths, depths, strides, …)

Network Generator (Informally, Simple Case)

• Think of a Python function:

def vgg_net(input_res, depth, conv1_out_channels):
… # code to make the model
return model

• Input: some arguments (resolution, widths, depths, strides, …)

• Output: instantiation of a network

Network Generator (Informally, Simple Case)

• Think of a Python function:

def vgg_net(input_res, depth, conv1_out_channels):
… # code to make the model
return model

• Input: some arguments (resolution, widths, depths, strides, …)

• Output: instantiation of a network

• All valid input args à generates a population of related networks

From Single Networks to Populations of Networks

• Comparing individual models (“point estimates”)
• E.g., AlexNet vs. VGG-16

Figure from: On Network Design Spaces for Visual Recognition. Radosavovic et al. ICCV 2019.

- No controls
- Why is one better than another?

Poster #61 in session 1.2 tomorrow (Tuesday)

From Single Networks to Populations of Networks

• Comparing a few hand-designed variants (“curve estimates”)
• E.g., ResNet-50, ResNet-101, … vs. ResNeXt-50-32x4d, ResNeXt-101-32x4d, …

Figure from: On Network Design Spaces for Visual Recognition. Radosavovic et al. ICCV 2019.

- Realization of FLOPs <-> accuracy
- Vary only one dimension (e.g., depth)

From Single Networks to Populations of Networks

• Comparing generated populations of models (“distribution
estimates”)
• Define network generators, evaluate population

Figure from: On Network Design Spaces for Visual Recognition. Radosavovic et al. ICCV 2019.

- Vary all dimensions
- Is A always > B?

Why This Shift in Perspective is Important

• Discover general principles
• E.g., grouped conv (extreme: depthwise conv) is good

Figure from: On Network Design Spaces for Visual Recognition. Radosavovic et al. ICCV 2019.

Why This Shift in Perspective is Important

• Discover general principles
• E.g., grouped conv (extreme: depthwise conv) is good

• Understand the landscape
• Are all models basically good? (e.g., insight into NAS)

Changes to NAS design spaces in a sequence of NAS papers

Figure from: On Network Design Spaces for Visual Recognition. Radosavovic et al. ICCV 2019.

Why This Shift in Perspective is Important

• Discover general principles
• E.g., grouped conv (extreme: depthwise conv) is good

• Understand the landscape
• Are all models basically good? (e.g., insight into NAS)

Figure from: On Network Design Spaces for Visual Recognition. Radosavovic et al. ICCV 2019.

Why This Shift in Perspective is Important

• Discover general principles
• E.g., grouped conv (extreme: depthwise conv) is good

• Understand the landscape
• Are all models basically good? (e.g., insight into NAS)

Figure from: On Network Design Spaces for Visual Recognition. Radosavovic et al. ICCV 2019.

Why This Shift in Perspective is Important

• Discover general principles
• E.g., grouped conv (extreme: depthwise conv) is good

• Understand the landscape
• Are all models basically good? (Insight into NAS)

• Explore scientific questions

Rosenblatt (1959)
first Perceptron machine

Explore Scientific Questions

How does random wiring compare to engineered wiring?

Rosenblatt (1959)
first Perceptron machine

Turing (1948)
“Unorganized machines”

Minsky (1951)
randomly wired “SNARC”

Historical Motivation

Neuroscience Motivation

Bullmore and Sporns. "Complex brain networks: graph theoretical analysis of structural and functional systems." Nature reviews neuroscience, 200
Bullmore and Sporns. "The economy of brain network organization." Nature Reviews Neuroscience, 2012

Practical Motivation

chain-like wiring patterns

LeNet

AlexNet

VGGNet

Practical Motivation

chain-like wiring patterns

LeNet

AlexNet

VGGNet

multiple wiring paths

Inception

ResNet

DenseNet

Prior Work: Random Micro Wiring

• Macro vs. micro wiring
• Macro: wires between “op level” units (e.g., conv) [our focus]
• Micro: wires inside “op level” units (e.g., sparse conv filters)

Deep Expander Networks: Efficient Deep Networks from Graph Theory.
Ameya Prabhu, Girish Varma, Anoop Namboodiri. ECCV 2018.

E.g., micro wiring: random expander graphs

• Optimize for weights and connectivity masks with gradient descent
• Focus: learned wiring

Prior Work: Connectivity within ResNe(X)t

Karim Ahmed and Lorenzo Torresani, “MaskConnect: Connectivity
Learning by Gradient Descent”, ECCV 2018

Prior Work: Learned Wiring with NAS

Searching for
(1) operations
(2) wiring patterns

Barret Zoph, Quoc V. Le, “:Neural Architecture Search with Reinforcement Learning”, ICLR
2017

Network Generators (More Formally)

𝑔 is a mapping from a parameter space Θ, to a network architecture space 𝒩

Network Generators (More Formally)

𝑔 is a mapping from a parameter space Θ, to a network architecture space 𝒩

• The parameters 𝜃 ∈ Θ specify the instantiated network

Network Generators (More Formally)

𝑔 is a mapping from a parameter space Θ, to a network architecture space 𝒩

• The parameters 𝜃 ∈ Θ specify the instantiated network
• E.g., ResNet generator: 𝜃 = {#stages, #blocks per stage, depth, width,

filter sizes, …}

𝑔(𝜃) =

Stochastic Network Generators

• The network generator 𝑔(𝜃) performs a deterministic mapping

(DARTS: Differentiable Architecture Search, Liu et al., 2018)

Stochastic Network Generators

• The network generator 𝑔(𝜃) performs a deterministic mapping

• 𝑠: seed of a pseudo-random number generator used by 𝑔

(DARTS: Differentiable Architecture Search, Liu et al., 2018)

Stochastic Network Generators

• The network generator 𝑔(𝜃) performs a deterministic mapping

• 𝑠: seed of a pseudo-random number generator used by 𝑔

• 𝑔(𝜃, 𝑠) is a stochastic network generator

𝑔(𝜃, 1) = , 𝑔(𝜃, 2) = , …

ENAS, ICML 2018

Network Generator Perspective

• Encapsulates the entire network generation process
• Empirical priors (what we already know works well)
• Learnable parameters 𝜃
• Randomization 𝑠
• Misc. heuristic rules are revealed

E.g., NAS from the Network Generator Perspective

• LSTM controller weights: 𝜃

E.g., NAS from the Network Generator Perspective

• LSTM controller weights: 𝜃
• Sample actions (insert an conv, connect two nodes, …) determined by 𝜃,
𝑠

E.g., NAS from the Network Generator Perspective

• LSTM controller weights: 𝜃
• Sample actions (insert an conv, connect two nodes, …) determined by 𝜃,
𝑠
• Allowed wiring patterns is a small subset of all possible graphs
• E.g., 5 nodes in a cell always have input degree 2 and output degree 1

The generator design involves a strong prior

ENAS, ICML 2018

NASNet-A, CVPR 2018

Amoeba Net, AAAI 2019

“Misc. heuristic rules”

Network Generators for Randomly Wired Networks

How do we design neural networks like these?

Step 1. Generate a general graph G

Step 2. Map graph G to a valid neural network

Random Graph Models

Erdös-Rényi (ER), 1959

Barabási–Albert (BA), 1998

Watts–Strogatz (WS), 1998
“Small-world” graphs

“Scale-free” graphs

Example: Small-World Ggraphs
100 nodes, average degree = 4

P = 0.1 P = 0.25 P = 0.5 P = 0.9

More Regular More “Random”“Small world”

Rewiring probability P

From a graph to a neural network

(random)
general graph

Network Generator

From a graph to a neural network

convert to DAG
(random)
general graph

Network Generator

From a graph to a neural network

convert to DAG
(random)
general graph

add extra input &
output node

Network Generator

From a graph to a neural network

Edges:
data flow

Nodes:
transformation

what are nodes and edges?

convert to DAG
(random)
general graph

add extra input &
output node

Network Generator

From a graph to a neural network

one graph =

one stage

Edges:
data flow

Nodes:
transformation

what are nodes and edges?

convert to DAG
(random)
general graph

add extra input &
output node

Network Generator

From a graph to a neural network

one graph =

one stage

Edges:
data flow

Nodes:
transformation

what are nodes and edges?

convert to DAG
(random)
general graph

add extra input &
output node

Network Generator

“Misc. heuristic rules”

Notes on Nodes and Edges

• Overall computation ∝ # nodes

• # nodes is fixed

• Tiny extra computation on each
edge (× 𝑤*)

• Differences in accuracy are about wiring, not FLOPs or parameters

ReLU, conv, BN

Activation copies

Weighted sum

Input activations

deterministicrandom (fixed seed)

MobileNet V1
(70.6%)

MobileNet V1
(70.6%)

All models: ~ 580M FLOPs

Small Model Regime – Engineered Baseline

MobileNet V1
(70.6%)

MobileNet V1
(70.6%)

(68.8% - 71.9%)

All models: ~ 580M FLOPs

WS

Extreme case: deterministic

(72.6%)
(73.8%)

MobileNet V1
(70.6%)

(68.8% - 71.9%)

All models: ~ 580M FLOPs

WS

(72.6%)
(73.8%)

MobileNet V1
(70.6%)

(68.8% - 71.9%)
(70.7%)

All models: ~ 580M FLOPs

BA

(72.6%)
(73.8%)

MobileNet V1
(70.6%)

(68.8% - 71.9%)
(70.7%)(72.8%)

All models: ~ 580M FLOPs

ER

Results – Small Computation Regime (< 600M FLOPs)
Network Top-1 Acc FLOPs
MobileNet 70.6 569
MobileNet v2 74.7 585
ShuffleNet 73.7 524
ShuffleNet v2 74.9 591
NASNet-A 74.0 564
NASNet-C 72.5 558
AmoebaNet-A 74.5 555
AmoebaNet-C 75.7 570
PNAS 74.2 588
DARTS 73.1 595

RandWire-WS 74.7±0.25 583±6.2

NAS

Hand designed

Randomly Wired

Results – Small Computation Regime (< 600M FLOPs)
Network Top-1 Acc FLOPs
MobileNet 70.6 569
MobileNet v2 74.7 585
ShuffleNet 73.7 524
ShuffleNet v2 74.9 591
NASNet-A 74.0 564
NASNet-C 72.5 558
AmoebaNet-A 74.5 555
AmoebaNet-C 75.7 570
PNAS 74.2 588
DARTS 73.1 595

RandWire-WS 74.7±0.25 583±6.2

NAS

Hand designed

Randomly Wired

Results – Small Computation Regime (< 600M FLOPs)
Network Top-1 Acc FLOPs
MobileNet 70.6 569
MobileNet v2 74.7 585
ShuffleNet 73.7 524
ShuffleNet v2 74.9 591
NASNet-A 74.0 564
NASNet-C 72.5 558
AmoebaNet-A 74.5 555
AmoebaNet-C 75.7 570
PNAS 74.2 588
DARTS 73.1 595

RandWire-WS 74.7±0.25 583±6.2

NAS

Hand designed

Randomly Wired

ResNet-50

+

+

+

…

RandWire (same FLOPs)

77.1% 79.1% 79.1% 79.0%ImageNet Top1 Acc:

Conclusions

• The next frontier: Architecting network generators?

• Study populations of networks

• We explored randomly wired nets – they can work surprisingly well!

• Heuristic rules are pervasive even in “random” and “automatic”
generators

